Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Di- μ-acetato-bis[bis(4-aminobenzo-ato)(2,2'-bipyridyl)manganese(II)]

Quan-Zheng Zhang and Can-Zhong Lu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Received 15 November 2004
Accepted 9 December 2004
Online 15 January 2005

In the title compound, $\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8^{-}}\right.\right.$ $\left.\mathrm{N}_{2}\right)_{2}$], the two $\mathrm{Mn}^{\mathrm{II}}$ atoms are each coordinated by one $2,2^{\prime}$ bipyridyl molecule, one 4-aminobenzoate ion and two acetate ions. The two Mn atoms exhibit different coordination environments: one is coordinated by two N and four O atoms, while the other is coordinated by two N and three O atoms. The two Mn atoms are bridged by two acetate ions in a synanti mode, with an Mn \cdots Mn distance of 4.081 (1) \AA.

Comment

As a bifunctional organic ligand, 4-aminobenzoic acid (4-abzH) has been extensively reported in coordination chemistry because of the richness of its coordination modes.
(i) 4-abzH can act as a carboxylic acid synthon and also as a good monodentate ligand through the amine group (Fur \& Masse, 1996; Chen \& Chen, 2002).
(ii) Deprotonated $4-\mathrm{abzH}$ can act as a monodentate ligand through a carboxylate O atom (Sundberg et al., 1998; Chandrasekhar et al., 1988; Amiraslanov et al., 1979), and as a chelating and/or bridging ligand through its amine and/or carboxylate groups (Zheng et al., 2001; Rzaezynska \& Belskii, 1994; Hauptmann et al., 2000
(iii) 4-abzH may be protonated to form organic cation templating agents (Wang et al., 2002).

Although some complexes containing mixed 4-aminobenzoate and other N -atom donor ligands have been synthesized and characterized, complexes containing mixed 4 -aminobenzoate and $2,2^{\prime}$-bipyridyl ($2,2^{\prime}$-bipy) ligands have rarely been reported. To the best of our knowledge, there are only three reports of structures with 4 -aminobenzoate $/ 2,2^{\prime}$ bipyridyl ligands, viz. $\left[\mathrm{Cu}(4-\mathrm{abz})_{2}\left(2,2^{\prime}\right.\right.$-bipy $\left.)\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Naldini et al., 1984), $\left[\mathrm{Cu}(4-\mathrm{abz})\left(2,2^{\prime} \text {-bipy }\right)(4-\mathrm{abzH})\right]_{2}\left(\mathrm{NO}_{3}\right)_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and $\left\{\left[\mathrm{Cu}(4-\mathrm{abz})\left(2,2^{\prime} \text {-bipy }\right)\left(4,4^{\prime} \text {-bipy }\right)_{0.5}\right]\left(\mathrm{ClO}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathrm{Hu}$ et al., 2003). We report here the synthesis and characterization of the title complex, (I), in which the amine group of the 4 -aminobenzoate moiety is uncoordinated.).

Compound (I) consists of a dimeric unit, $\left[\mathrm{Mn}_{2}(\mathrm{MeCOO})_{2^{-}}\right.$ $\left.(4-\mathrm{abz})_{2}\left(2,2^{\prime} \text {-bipy }\right)_{2}\right]$ (Fig. 1). The coordination geometry

(I)
around atom Mn 1 is distorted octahedral, the six coordination sites being occupied by two N atoms from a $2,2^{\prime}$-bipy molecule and four O atoms from one 4-aminobenzoate and two acetate ligands. The $\mathrm{Mn}-\mathrm{N}$ distances are 2.242 (3) and 2.296 (3) \AA, and the $\mathrm{Mn}-\mathrm{O}$ distances range from 2.087 (3) to 2.454 (3) \AA (Table 1). Atom Mn 2 is coordinated by two N atoms from a $2,2^{\prime}$-bipy ligand and three O atoms from one 4 -aminobenzoate and two acetate ions, forming a highly distorted square pyramid. The apical position of the pyramid is occupied by atom O 2 , with an $\mathrm{Mn}-\mathrm{O}$ distance of 2.146 (2) \AA, while the equatorial plane is defined by atoms N5, N6, O4 and O7, with $\mathrm{Mn}-\mathrm{N}$ distances of 2.253 (3) and 2.298 (3) \AA, and $\mathrm{Mn}-\mathrm{O}$ distances of 2.069 (2) and 2.155 (2) \AA. In the Mn1 coordination environment, the 4 -aminobenzoate molecule exhibits a bidentate coordination mode, while in the Mn2 coordination environment, the 4 -aminobenzoate molecule exhibits a monodentate coordination mode, the $\mathrm{Mn} 2 \cdots \mathrm{O} 8$ distance being 2.655 (3) \AA.

Atoms N3 and N4 of the 4 -aminobenzoate ligands are uncoordinated but link the molecules via hydrogen bonds

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.

Figure 2
The crystal structure of (I). Broken lines indicate hydrogen bonds.
(Table 2). A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction is also present (Table 2). Thus, the binuclear complexes are bound together through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions into a three-dimensional network (Fig. 2). There are no $\pi-\pi$ stacking interactions.

In (I), atoms Mn1 and Mn2 are bridged by the two acetate ions in a syn-anti fashion, and the $\mathrm{Mn}-\mathrm{O}_{\text {syn }}$ bond distances are longer than the $\mathrm{Mn}-\mathrm{O}_{\text {anti }}$ distances (Table 3). This configuration is in contrast to the reverse relationship observed in another two syn-anti diacetate-bridged complexes, $\left[\mathrm{Mn}_{2}(\mu-\mathrm{MeCOO})_{2}(\mathrm{tpa})_{2}\right](\mathrm{TCNQ})_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$, (II) [tpa is tris(2-pyridylmethyl)amine and TCNQ is tetracyanoquinodimethane; Oshio et al., 1993], and $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\mathrm{MeCOO})_{2}(\text { bpia })_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (III) $\quad[b p i a \quad$ is $\operatorname{bis}($ picolyl $)(N$ -methylimidazol-2-yl)amine; Triller et al., 2002]. This difference may be attributed to the different coordination geometry around the Mn atoms and the influence of the co-existing ligands. The Mn1‥Mn2 distance of 4.081 (1) \AA in (I) is comparable to those in (II) and (III), but is considerably shorter than those in the other syn-anti dicarboxylatebridged complexes $\left[\mathrm{Mn}_{2}(\mu \text {-EtCOO })_{2}\left(2,2^{\prime} \text {-bipy }\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (IV) [4.653 (3) Å; Zhang \& Janiak, 2001], and $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\mathrm{PhCOO})_{2}\left(2,2^{\prime} \text {-bipy }\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2},(\mathrm{~V})[4.509(1) \AA$; Albela et al., 1998]. The longer $\mathrm{Mn} \cdots \mathrm{Mn}$ distances in (IV) and (V) may be attributed to the fact that the $\mathrm{Mn}-\mathrm{O}-\mathrm{C}$ angles of the EtCOO and PhCOO bridges are larger than those of the MeCOO bridge.

Experimental

An ethanol solution (8 ml) of 2, ${ }^{\prime}$-bipyridyl (1.2 mmol) and 4 -aminobenzoic acid (1.6 mmol) was added slowly to an aqueous solution (10 ml) of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ with continuous stirring. After half an hour, the reaction mixture was allowed to stand at room temperature undisturbed for two weeks, resulting in yellow
crystals (yield 61%). Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{Mn}_{2} \mathrm{~N}_{6} \mathrm{O}_{8}$: C 56.17, H 4.22, N 10.34%; found: C 56.01, H4.31, N 10.37%. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3421(s), 3325(s), 3221(s), 1639(s), 1574(s), 1443(s), 1383(s)$, $1306(\mathrm{~m}), 1173$ (m), 1016 (m), 854 (m), 791 (s), $773(\mathrm{~s}), 627(\mathrm{~m})$.

Crystal data
$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2^{-}}\right.$
$\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=812.59$
Orthorhombic, $\mathrm{P}_{\mathrm{A}} \mathrm{Ca} 2_{1}$
$a=20.8346$ (7) \AA
$b=8.0289$ (3) \AA
$c=21.3189(8) \AA$
$V=3566.2(2) \AA^{3}$
$Z=4$
$\mathrm{Z}=4$
$D_{x}=1.513 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.759, T_{\text {max }}=0.884$
26202 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.101$
$S=1.07$
7506 reflections
487 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 7843

reflections

$\theta=3.0-27.5^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.44 \times 0.40 \times 0.16 \mathrm{~mm}$

7506 independent reflections
7084 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-26 \rightarrow 26$
$k=-10 \rightarrow 10$
$l=-22 \rightarrow 27$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0547 P)^{2}\right. \\
&\quad+1.202 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.97 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& 3306 \text { Friedel pairs } \\
& \text { Flack parameter }=0.446(15)
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.087(3)$	$\mathrm{Mn} 2-\mathrm{O} 4$	$2.069(2)$
$\mathrm{Mn} 1-\mathrm{O} 3$	$2.122(2)$	$\mathrm{Mn} 2-\mathrm{O} 2$	$2.146(2)$
$\mathrm{Mn} 1-\mathrm{O} 6$	$2.189(2)$	$\mathrm{Mn} 2-\mathrm{O} 7$	$2.155(2)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.242(3)$	$\mathrm{Mn} 2-\mathrm{N} 5$	$2.253(3)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.296(3)$	$\mathrm{Mn} 2-\mathrm{N} 6$	$2.298(3)$
$\mathrm{Mn} 1-\mathrm{O} 5$	$2.454(3)$		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$	$108.04(11)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 5$	$85.72(9)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 6$	$101.75(11)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 5$	$118.45(8)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 6$	$95.20(9)$	$\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{O} 2$	$118.58(11)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$150.39(12)$	$\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{O} 7$	$103.32(9)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 2$	$91.24(9)$	$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 7$	$92.39(9)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 2$	$98.51(9)$	$\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{N} 5$	$137.28(10)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$86.74(11)$	$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{N} 5$	$95.02(9)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{N} 1$	$88.14(9)$	$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{N} 5$	$100.56(10)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{N} 1$	$169.36(9)$	$\mathrm{O} 4-\mathrm{Mn} 2-\mathrm{N} 6$	$84.84(9)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$71.27(10)$	$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{N} 6$	$85.81(9)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 5$	$87.80(10)$	$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{N} 6$	$171.44(9)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$	$150.28(9)$	$\mathrm{N} 5-\mathrm{Mn} 2-\mathrm{N} 6$	$71.31(10)$
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 5$	$56.26(8)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.
$C g$ is the centroid of the C23-C28 ring of the 4-aminobenzoate ligand.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.27	$3.074(4)$	155
N4-H4B O^{ii}	0.86	2.29	$3.087(4)$	155
C36-H36A $\cdots C g^{\text {iii }}$	0.93	2.79	3.66	156

Symmetry codes: (i) $\frac{1}{2}-x, 1+y, z-\frac{1}{2}$; (ii) $1-x,-y, \frac{1}{2}+z$; (iii) $\frac{1}{2}-x, y, z-\frac{1}{2}$.

metal-organic compounds

Table 3
Comparison of the bond lengths ((\AA) and angles (${ }^{\circ}$) in the syn-anti RCOO-bridged dimanganese moiety of (I) with corresponding values in the related compounds (II)-(V).

	R	$\mathrm{Mn} \cdots \mathrm{Mn}$	$\mathrm{Mn}-\mathrm{O}_{\text {syn }}$	$\mathrm{Mn}-\mathrm{O}_{\text {anti }}$	$\mathrm{Mn}-\mathrm{O}-\mathrm{C}_{\text {syn }}$	$\mathrm{Mn}-\mathrm{O}-\mathrm{C}_{\text {anti }}$
(I)	Me	$4.081(1)$	$2.146(2)$	$2.087(3)$	$114.1(2)$	$146.9(3)$
(II)	Me	$4.145(1)$	$2.122(2)$	$2.069(2)$	$122.6(2)$	$139.0(2)$
(III)	Me	$4.128(1)$	$2.087(2)$	$2.160(3)$	$133.5(2)$	$127.8(3)$
(IV)	Et	$4.653(3)$	$2.119(3)$	$2.107(4)$	$128.5(2)$	$131.3(2)$
(V)	Ph	$4.509(1)$	$2.117(4)$	$2.139(4)$	$126.4(3)$	$150.6(2)$

Notes: for (I), the first and second lines are for the $\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$ and $\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$ bridges, respectively.

All H atoms were positioned geometrically and treated as riding, with $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The maximum residual density is located $1.76 \AA$ from atom $\mathrm{H} 1 A$ and the minimum density is $0.72 \AA$ from atom Mn 1 . The H atoms of the two methyl groups were not well defined.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank the 973 program of the MOST (grant No. 001CB108906), the National Natural Science Foundation of China (grant Nos. 20425313, 90206040, 20333070 and 20303021), the Natural Science Foundation of Fujian Province and the Chinese Academy of Sciences for supporting this study.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1213). Services for accessing these data are described at the back of the journal.

References

Albela, B., Corbella, M., Ribas, J., Castro, I., Sletten, J. \& Stoeckli-Evans, H. (1998). Inorg. Chem. 37, 788-798.

Amiraslanov, I. R., Mamedov, K. S., Movsumov, E. M., Musaev, F. N. \& Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1077.
Chandrasekhar, V., Day, R. O., Holmes, J. M. \& Holmes, R. R. (1988). Inorg. Chem. 27, 958-964.
Chen, H. J. \& Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fur, Y. L. \& Masse, R. (1996). Acta Cryst. C52, 2183-2185.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.
Hu, D. H., Huang, W., Gou, S. H., Fang, J. L. \& Fun, H.-K. (2003). Polyhedron, 22, 2661-2667.
Naldini, L., Zoroddu, M. A., Demartin, F. \& Manassero, M. (1984). Inorg. Chim. Acta, 89, L1-L2.
Oshio, H., Ino, E., Mogi, I. \& Ito, T. (1993). Inorg. Chem. 32, 5697-5703.
Rzaezynska, Z. \& Belskii, V. K. (1994). Pol. J. Chem. 68, 309-312.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1994). SAINT (Version 4.0) and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sundberg, M. R., Koskimies, J. K., Matikainen, J. \& Tylli, H. (1998). Inorg. Chim. Acta, 268, 21-30.
Triller, M. U., Hsieh, W. Y., Pecoraro, V. L., Rompel, A. \& Krebs, B. (2002). Inorg. Chem. 41, 5544-5554.
Wang, R. H., Hong, M. C., Luo, J. H., Cao, R., Shi, Q. \& Weng, J. B. (2002). Eur. J. Inorg. Chem. pp. 2904-1912.

Zhang, C. \& Janiak, C. (2001). Z. Anorg. Allg. Chem. 627, 1972-1975.
Zheng, S. L., Tong, M. L., Yu, X. L. \& Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 586-592.

